
Home Security System

IOT Final Group Project 1

2023 - 2024

HOME SECURITY / DEFENSE SYSTEM

IOT Group Project
GROUP 10

Home Security System

IOT Final Group Project 2

Table of Contents

1. TEAM ___ 4

1.1. Team compostion ___ 4

1.2. Responsibilities __ 4

2. PROJECT INTRODUCTION __ 5

2.1. Project Definition ___ 5

2.1.1. How will we meet the evaluation criteria? __ 5

2.2. Description __ 5

2.3. Information value loop ___ 6
2.3.1. Current state and behavior ___ 6
2.3.2. Read out with sensors __ 6
2.3.3. Communicate through embedded communication protocols ___________________________ 6
2.3.4. Transport data to Embedded platforms ___ 7
2.3.5. Communicating through communication protocols ___________________________________ 7
2.3.6. Transporting data to cloud platforms ___ 7
2.3.7. Supporting Analytical and intelligence tools __ 7
2.3.8. Value driven actions __ 7

2.4. Schematic __ 8

2.5. Pictures __ 9

3. PROJECT CODE ___ 11

3.1. Code printout ___ 11
3.1.1. Raspberry PI Pico __ 11
3.1.2. OrangePI 3 LTS __ 17

3.2. Detailed Code explanation ___ 24
3.2.1. Raspberry PI Pico __ 24
3.2.2. OrangePI 3 LTS __ 32

4. HARDWARE EXPLANATION __ 45

4.1. List of components ___ 45
4.1.1. Standard components ___ 45
4.1.2. Extra components __ 45

4.2. Components __ 47
4.2.1. Jumper cables ___ 47
4.2.2. (1x) Raspberry PI pico ___ 47
4.2.3. (1x) OrangePI 3 LTS __ 50
4.2.4. (1x) HC-SR04 Sensor (Distance) ___ 52
4.2.5. (2x) 220 ohm resistor __ 55
4.2.6. (1x) LCD 5110 ___ 56
4.2.7. (1x) Watergun ___ 63
4.2.8. (5x) L298N Motor Driver __ 64
4.2.9. (1x) Smoke machine __ 70
4.2.10. (2x) 12V Battery holders __ 73
4.2.11.(5x) Nema 17 ___ 74

Home Security System

IOT Final Group Project 3

4.2.12. (4x) Shaft coupler ___ 77

5. PHYSICAL STRUCTURE ___ 78

5.1. Software to make parts __ 78
5.1.1. FreeCAD ___ 78

5.2. 3D Printed components ___ 78
5.2.1. Main Gun mount ___ 78
5.2.2. Gun Barrel mount ___ 78
5.2.3. Camera and distance sensor mount ___ 79
5.2.4. Gun Top __ 79
5.2.5. Gun bottom ___ 80

6. VIDEO __ 81

7. SELF EVALUATION ___ 82

8. REFERENCES ___ 83

8.1. DataSheets / User manuals __ 83

8.2. Schematics___ 83

8.3. Other ___ 83

Home Security System

IOT Final Group Project 4

1. Team

1.1. Team compostion

• Alex van Poppel

• Gabriela Betancourth Rodrigues
• Rik Dekkers

• Tijs Kanters

1.2. Responsibilities

TEAM LEADER DOCUMENTATION HARDWARE SOFTWARE

Tijs Kanters Rik Dekkers Alex van Poppel
Gabriela Betancourth

Rodrigues

Home Security System

IOT Final Group Project 5

2. Project Introduction

2.1. Project Definition

2.1.1. How will we meet the evaluation criteria?

Sensors, communication Digital input and output Camera input

 Analog input Data from light distance sensor

 I²C & SPI I²C – camera signal | SPI – LCD screen

Embedded platforms Orange Pi Central processor, running AI and communicate

 Raspberry Pi Pico On gun, receive all data + send to OrangePI

Cloud & communication MQTT Collect AI data

 Online dashboard uBEAC combine data from different sensors

Analyze AI Recognize where people are

Act Stepper motor Rotates gun into position

2.2. Description

We live in a world where dangers are lurking everywhere…

In a world like this, we have to be able to keep ourselves safe, while also trying to make sure we don’t have

to dedicate our entire lives preparing for the worst. Wouldn’t it be amazing if we could use today’s

technology to make a machine take a large part of the defensive measures of our backs, so we can focus

on more important things?

That was our group’s motivation to make a system that can (peacefully) neutralize possible attackers,

making sure we stay safe. Think of it as a home security system that doesn’t only alert you, but also takes

some action to scare away intruders.

Now of course we can’t just make a machine that harms possible intruders, because you never know if they

just come to visit or actually want to cause harm. That is why we try to neutralize them in a fun, but still

scary way, rather than going full offence mode.

To put it very simple, our system detects a possible intruder with sensors and camera’s using AI, which then

moves everything into place making sure to spray the intruder with some harmless water and if they get to

close we temporarily blind them with a smoke screen.

Home Security System

IOT Final Group Project 6

2.3. Information value loop

2.3.1. Current state and behavior

We live in a world where home security becomes more important. More and more homes are getting private

security options to scare away burglars. We just think that a simple alarm isn’t going to fulfill our needs for

long. Because of this we want to try to scare away potentially dangerous people with soft offense. We try to

come up with fun and relatively harmless ways to scare away possible intruders and attackers.

2.3.2. Read out with sensors

We use a combination of a camera with AI and a distance sensor to detect possible dangers. We have kept

possible implementation of many more sensors in mind while designing, allowing for relatively

implementation of a light sensor, a sensor for sound, temperature, … anything you think would make the

device even safer

2.3.3. Communicate through embedded communication protocols

We use SPI in order to display some of our immediate results on an LCD screen mounted on the side. Extra

sensors for the temperature will use the I²C protocol in order to communicate their results.

Home Security System

IOT Final Group Project 7

2.3.4. Transport data to Embedded platforms

We use a strong combination of both the Raspberry PI pico and the OrangePI 3 LTS to process our data

and create a possible reaction. They form our global command center. Here the AI operates depending on

the camera input, the distance is measured, other sensor data is collected, the movement is controlled…

everything required to guarantee safety.

2.3.5. Communicating through communication protocols

These two embedded device can only be strong if they have a stable connection to share data and work

together. For this we use an MQTT broker on the Raspberry PI pico which then communicates with the

OrangePI 3 LTS.

2.3.6. Transporting data to cloud platforms

All of our data could be made available on online cloud platforms. Using ThingSpeak for sensor data and

uBEAC to combine all data together and eventually visualize it.

2.3.7. Supporting Analytical and intelligence tools

As mentioned before, our system uses a camera with AI. This AI detects where a person is and visualizes it

for the user to see. The motors operate on commands given by the AI, communicated over MQTT.

2.3.8. Value driven actions

By this way we believe that our system can defend your home in a better way than the average alarm

system, while not being too harmful. The system will align itself carefully with the opponent and surprise

attack it with a blast of water they will never see coming, while being blinded by a smokescreen.

Home Security System

IOT Final Group Project 8

2.4. Schematic

Home Security System

IOT Final Group Project 9

2.5. Pictures

Home Security System

IOT Final Group Project 10

Home Security System

IOT Final Group Project 11

3. Project code

3.1. Code printout

3.1.1. Raspberry PI Pico

import board

import busio

import digitalio

import adafruit_pcd8544

import wifi

import socketpool

import adafruit_minimqtt.adafruit_minimqtt as MQTT

import json

import time

WiFi connection details

wifi_ssid = '************' # Sensored because someone put their actual data

in here :D

wifi_password = '************' # Sensored because someone put their actual

data in here :D

Connect to WiFi

print("Connecting to WiFi...")

try:

 wifi.radio.connect(wifi_ssid, wifi_password)

 print("Connected to WiFi!")

except Exception as e:

 print(f"Failed to connect to WiFi: {e}")

 import sys

 sys.exit()

MQTT broker details

mqtt_broker = "192.168.0.125"

mqtt_topic = "/home/data"

MQTT setup

pool = socketpool.SocketPool(wifi.radio)

mqtt_client = MQTT.MQTT(

 broker=mqtt_broker,

 port=1883,

 socket_pool=pool,

)

def connect(client, userdata, flags, rc):

Home Security System

IOT Final Group Project 12

 print("Connected to MQTT Broker!")

 client.subscribe(mqtt_topic)

def disconnect(client, userdata, rc):

 print("Disconnected from MQTT Broker!")

Setup for LCD

spi = busio.SPI(clock=board.GP6, MOSI=board.GP7)

cs = digitalio.DigitalInOut(board.GP5)

dc = digitalio.DigitalInOut(board.GP4)

rst = digitalio.DigitalInOut(board.GP8)

back_light = digitalio.DigitalInOut(board.GP9)

cs.direction = digitalio.Direction.OUTPUT

dc.direction = digitalio.Direction.OUTPUT

rst.direction = digitalio.Direction.OUTPUT

back_light.direction = digitalio.Direction.OUTPUT

lcd = adafruit_pcd8544.PCD8544(spi, dc, cs, rst)

lcd.contrast = 50

lcd.rotation = 2

def display_direction(direction):

 lcd.fill(0)

 lcd.text("Direction:", 0, 0, 1)

 lcd.text(direction, 0, 10, 1)

 lcd.show()

 back_light.value = True

def display_center(direction):

 lcd.fill(0)

 lcd.text("Person in center:", 0, 0, 1)

 lcd.text(direction, 0, 10, 1)

 lcd.show()

 back_light.value = True

Stepper motor control setup

FULL_STEP_SEQUENCE = [

 [1, 1, 0, 0], # Step 1

 [0, 1, 1, 0], # Step 2

 [0, 0, 1, 1], # Step 3

 [1, 0, 0, 1]

]

DELAY_SECONDS = 0.001

Home Security System

IOT Final Group Project 13

motor1_pins = [

 digitalio.DigitalInOut(board.GP18),

 digitalio.DigitalInOut(board.GP19),

 digitalio.DigitalInOut(board.GP20),

 digitalio.DigitalInOut(board.GP21)

]

motor2_pins = [

 digitalio.DigitalInOut(board.GP10),

 digitalio.DigitalInOut(board.GP11),

 digitalio.DigitalInOut(board.GP12),

 digitalio.DigitalInOut(board.GP13)

]

for pin in motor1_pins + motor2_pins:

 pin.direction = digitalio.Direction.OUTPUT

def rotate_full_step_left():

 display_direction("Left")

 for step_sequence in FULL_STEP_SEQUENCE:

 motor1_pins[0].value = step_sequence[0]

 motor1_pins[1].value = step_sequence[1]

 motor1_pins[2].value = step_sequence[2]

 motor1_pins[3].value = step_sequence[3]

 time.sleep(DELAY_SECONDS)

def rotate_full_step_right():

 display_direction("Right")

 for step_sequence in reversed(FULL_STEP_SEQUENCE):

 motor1_pins[0].value = step_sequence[0]

 motor1_pins[1].value = step_sequence[1]

 motor1_pins[2].value = step_sequence[2]

 motor1_pins[3].value = step_sequence[3]

 time.sleep(DELAY_SECONDS)

def rotate_full_step_up():

 display_direction("Up")

 for step_sequence in FULL_STEP_SEQUENCE:

 motor2_pins[0].value = step_sequence[0]

 motor2_pins[1].value = step_sequence[1]

 motor2_pins[2].value = step_sequence[2]

 motor2_pins[3].value = step_sequence[3]

 time.sleep(DELAY_SECONDS)

def rotate_full_step_down():

 display_direction("Down")

 for step_sequence in reversed(FULL_STEP_SEQUENCE):

Home Security System

IOT Final Group Project 14

 motor2_pins[0].value = step_sequence[0]

 motor2_pins[1].value = step_sequence[1]

 motor2_pins[2].value = step_sequence[2]

 motor2_pins[3].value = step_sequence[3]

 time.sleep(DELAY_SECONDS)

def message(client, topic, message):

 print(f"Received message on topic {topic}: {message}")

 data = json.loads(message)

 left_shoulder = data.get("left_shoulder")

 right_shoulder = data.get("right_shoulder")

 left_hip = data.get("left_hip")

 right_hip = data.get("right_hip")

 margin = data.get("margin")

 center_x = data.get("center_x")

 center_y = data.get("center_y")

 if None in [left_shoulder, right_shoulder, left_hip, right_hip, margin,

center_x, center_y]:

 print('Invalid data received')

 return

 shoulder_hip_points = [left_shoulder, right_shoulder, left_hip,

right_hip]

 if shoulder_hip_points[1][0] > center_x + margin and

shoulder_hip_points[1][1] > center_y + margin:

 print('bottom right diagonal')

 rotate_full_step_right()

 rotate_full_step_up()

 elif shoulder_hip_points[0][0] < center_x - margin and

shoulder_hip_points[0][1] > center_y + margin:

 print('bottom left diagonal')

 rotate_full_step_left()

 rotate_full_step_up()

 elif shoulder_hip_points[3][0] > center_x + margin and

shoulder_hip_points[3][1] < center_y - margin:

 print('top right diagonal')

 rotate_full_step_down()

 rotate_full_step_right()

 elif shoulder_hip_points[2][0] < center_x - margin and

shoulder_hip_points[2][1] < center_y - margin:

 print('top left diagonal')

 rotate_full_step_down()

 rotate_full_step_left()

Home Security System

IOT Final Group Project 15

 elif shoulder_hip_points[1][0] > center_x - margin and

shoulder_hip_points[3][0] > center_x - margin:

 print('right')

 rotate_full_step_right()

 elif shoulder_hip_points[2][1] < center_y + margin and

shoulder_hip_points[3][1] < center_y + margin:

 print('above')

 rotate_full_step_up()

 elif shoulder_hip_points[0][1] > center_y - margin and

shoulder_hip_points[1][1] > center_y - margin:

 print('beneath')

 rotate_full_step_down()

 elif shoulder_hip_points[0][0] < center_x + margin and

shoulder_hip_points[2][0] < center_x + margin:

 print('left')

 rotate_full_step_left()

 elif shoulder_hip_points[0][0] > center_x - margin and

shoulder_hip_points[0][1] < center_y - margin and \

 shoulder_hip_points[1][0] < center_x + margin and

shoulder_hip_points[1][1] < center_y - margin and \

 shoulder_hip_points[2][0] > center_x - margin and

shoulder_hip_points[2][1] > center_y + margin and \

 shoulder_hip_points[3][0] < center_x + margin and

shoulder_hip_points[3][1] > center_y - margin:

 print('center')

 display_center("shooting")

mqtt_client.on_connect = connect

mqtt_client.on_disconnect = disconnect

mqtt_client.on_message = message

Try connecting to the MQTT broker with debug information

print("Attempting to connect to MQTT broker...")

try:

 mqtt_client.connect()

 print("Connected to MQTT broker!")

except Exception as e:

 print("Failed to connect to MQTT broker:", e)

 import sys

 sys.exit()

Keep the program running to receive messages

try:

 while True:

 mqtt_client.loop(timeout=2)

 time.sleep(0.1)

Home Security System

IOT Final Group Project 16

finally:

 # Clean up GPIO pins

 for pin in motor1_pins + motor2_pins:

 pin.deinit()

 lcd.fill(0)

 lcd.show()

Home Security System

IOT Final Group Project 17

3.1.2. OrangePI 3 LTS

3.1.2.1. Main

This code part lacks a few comments, more information on the separate topics can be found in 3.2.2

import cv2

import mediapipe as mp

import numpy as np

import wiringpi as wp

import time

import paho.mqtt.client as mqtt

import json # Import the json module

from NS_hcsr04 import HCSR04

mp_pose = mp.solutions.pose

pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5,

min_tracking_confidence=0.5)

broker_address = "192.168.0.125"

topic = "/home/data"

Define GPIO pins connected to the L298N motor driver

TRIGGER_PIN = 3 # Trigger pin for HC-SR04

ECHO_PIN = 4 # Echo pin for HC-SR04

RELAY1_PIN = 1 # Relay 1 connected to GPIO pin 1

RELAY2_PIN = 2

RELAY4_pin=5

Function to initialize GPIO pins and WiringPi library

wp.wiringPiSetup()

wp.pinMode(RELAY1_PIN, 1)

wp.pinMode(RELAY2_PIN, 1)

wp.pinMode(RELAY4_pin,1)

def on_connect(client, userdata, flags, rc):

 if rc == 0:

 print("Connected to MQTT Broker!")

 else:

 print("Failed to connect, return code %d\n", rc)

Home Security System

IOT Final Group Project 18

def detect_shoulder_hip(image):

 image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 results = pose.process(image_rgb)

 if results.pose_landmarks:

 landmarks = results.pose_landmarks.landmark

 left_shoulder =

(int(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x *

image.shape[1]),

 int(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.va

lue].y * image.shape[0]))

 right_shoulder =

(int(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].x *

image.shape[1]),

 int(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.

value].y * image.shape[0]))

 left_hip = (int(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x *

image.shape[1]),

 int(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y *

image.shape[0]))

 right_hip = (int(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x *

image.shape[1]),

 int(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y *

image.shape[0]))

 return left_shoulder, right_shoulder, left_hip, right_hip

 else:

 return None

def enableRelay(pin):

 wp.digitalWrite(pin, 1)

 print(f"Relay on pin {pin} enabled")

def disableRelay(pin):

 wp.digitalWrite(pin, 0)

 print(f"Relay on pin {pin} disabled")

def trapezoid_area(left_top, left_bottom, right_top, right_bottom):

 width_top = np.linalg.norm(np.array(right_top) - np.array(left_top))

 width_bottom = np.linalg.norm(np.array(right_bottom) -

np.array(left_bottom))

 height = np.linalg.norm(np.array(left_bottom) - np.array(left_top))

 area = 0.5 * (width_top + width_bottom) * height

 return area

Home Security System

IOT Final Group Project 19

def calculate_margin(area):

 min_margin = 10

 max_margin = 50

 margin = min_margin + (max_margin - min_margin) * (area / 100000)

 return int(max(min_margin, min(max_margin, margin)))

client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION1)

client.on_connect = on_connect

client.connect(broker_address)

client.loop_start()

cap = cv2.VideoCapture(1, cv2.CAP_V4L2)

while True:

 ret, frame = cap.read()

 sensor = HCSR04(trigger_pin=12, echo_pin=14)

 distance = sensor.distance_cm()

 if distance == 'Out of range':

 distance = 10000

 print(distance)

 if not ret:

 break

 shoulder_hip_points = detect_shoulder_hip(frame)

 if shoulder_hip_points:

 left_shoulder, right_shoulder, left_hip, right_hip =

shoulder_hip_points

 if shoulder_hip_points is not None:

 area = trapezoid_area(left_shoulder, left_hip, right_shoulder,

right_hip)

 margin = calculate_margin(area)

 center_x = frame.shape[1] // 2

 center_y = frame.shape[0] // 2

 # Convert the points to a dictionary

 data_dict = {

 "left_shoulder": left_shoulder,

 "right_shoulder": right_shoulder,

 "left_hip": left_hip,

Home Security System

IOT Final Group Project 20

 "right_hip": right_hip,

 "margin":margin,

 "center_y": center_y,

 "center_x":center_x

 }

 # Convert the dictionary to a JSON string

 data_json = json.dumps(data_dict)

 # Publish the JSON string

 client.publish(topic, data_json)

 print("Message sent: ", data_json)

 for point in shoulder_hip_points:

 cv2.circle(frame, point, 5, (0, 255, 0), -1)

 cv2.line(frame, shoulder_hip_points[0], shoulder_hip_points[1],

(255, 255, 255), 2)

 cv2.line(frame, shoulder_hip_points[2], shoulder_hip_points[3],

(255, 255, 255), 2)

 cv2.line(frame, shoulder_hip_points[0], shoulder_hip_points[2],

(255, 255, 255), 2)

 cv2.line(frame, shoulder_hip_points[1], shoulder_hip_points[3],

(255, 255, 255), 2)

 if distance >= 100 or distance == 0 :

 enableRelay(RELAY2_PIN)

 enableRelay(RELAY1_PIN)

 time.sleep(1) # Ensure RELAY2_PIN is enabled for at least 1 second

 disableRelay(RELAY2_PIN)

 else:

 disableRelay(RELAY1_PIN)

 disableRelay(RELAY2_PIN)

 if shoulder_hip_points is None:

 print('empty')

 else:

 if shoulder_hip_points[0][0] > center_x - margin and

shoulder_hip_points[0][1] < center_y - margin and \

 shoulder_hip_points[1][0] < center_x + margin and

shoulder_hip_points[1][1] < center_y - margin and \

 shoulder_hip_points[2][0] > center_x - margin and

shoulder_hip_points[2][1] > center_y + margin and \

 shoulder_hip_points[3][0] < center_x + margin and

shoulder_hip_points[3][1] > center_y - margin:

Home Security System

IOT Final Group Project 21

 print('center')

 wp.digitalWrite(RELAY4_pin,1)

 else:

 wp.digitalWrite(RELAY4_pin,0)

 #cv2.circle(frame, (center_x, center_y), 5, (0, 0, 255), -1)

 # cv2.imshow("Shoulder and Hip Points", frame)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

3.1.2.2. Libary NS_HCSR04.py

import wiringpi as wp

import time

__version__ = '0.6.9'

__author__ = 'NanoSievert'

__license__ = "BSD 3-Clause"

class HCSR04:

 """

 Unofficial port of HC-SR04 Driver by rsc1975 made for an IOT project

trying to blast people with a pink water gun (makes it support wiringpi)

 """

 # Util functions

 def convert_us_s(us):

 """Converts time in microseconds to seconds."""

 return us*(10**(-6))

 # Main functions

 def __init__(self, trigger_pin, echo_pin, echo_timeout_us=500*2*30):

 """

 trigger_pin: Output pin to send pulses

 echo_pin: Readonly pin to measure the distance. The pin should be

protected with 1k resistor

 echo_timeout_us: Timeout in microseconds to listen to echo pin.

 By default is based in sensor limit range (4m)

 """

 self.echo_timeout_us = echo_timeout_us

Home Security System

IOT Final Group Project 22

 self.trigger_pin = trigger_pin

 self.echo_pin = echo_pin

 # Setup WiringPi

 wp.wiringPiSetup()

 # Set trigger pin as output

 wp.pinMode(self.trigger_pin, 1)

 # Set echo pin as input

 wp.pinMode(self.echo_pin, 0)

 def _send_pulse_and_wait(self):

 """

 Send the pulse to trigger and listen on echo pin.

 We use the method `wp.micros()` to get the microseconds until the

echo is received.

 """

 wp.digitalWrite(self.trigger_pin, wp.LOW)

 time.sleep(0.000005) # Stabilize the sensor

 wp.digitalWrite(self.trigger_pin, wp.HIGH)

 time.sleep(0.00001) # Send a 10us pulse

 wp.digitalWrite(self.trigger_pin, wp.LOW)

 # Start time

 start = time.time()

 # Wait for the echo pin to go high

 while wp.digitalRead(self.echo_pin) == wp.LOW:

 if (time.time() - start) > (self.echo_timeout_us / 1000000):

 print('Out of range')

 return

 start = time.time()

 # Wait for the echo pin to go low

 while wp.digitalRead(self.echo_pin) == wp.HIGH:

 pulse_time = (time.time() - start) * 1000000 # Convert to

microseconds

 if pulse_time > self.echo_timeout_us:

 print('Out of range')

 return

 return pulse_time

 def distance_mm(self):

 """

 Get the distance in millimeters without floating point operations.

 """

Home Security System

IOT Final Group Project 23

 pulse_time = self._send_pulse_and_wait()

 # To calculate the distance we get the pulse_time and divide it by 2

 # (the pulse walk the distance twice) and by 29.1 because

 # the sound speed on air (343.2 m/s), that It's equivalent to

 # 0.34320 mm/us that is 1mm each 2.91us

 # pulse_time // 2 // 2.91 -> pulse_time // 5.82 -> pulse_time * 100

// 582

 if not isinstance(pulse_time, float):

 return 0

 mm = pulse_time * 100 // 582

 return mm

 def distance_cm(self):

 """

 Get the distance in centimeters with floating point operations.

 It returns a float.

 """

 pulse_time = self._send_pulse_and_wait()

 # To calculate the distance we get the pulse_time and divide it by 2

 # (the pulse walk the distance twice) and by 29.1 because

 # the sound speed on air (343.2 m/s), that It's equivalent to

 # 0.034320 cm/us that is 1cm each 29.1us

 if not isinstance(pulse_time, float):

 return 0

 cms = (pulse_time / 2) / 29.1

 return cms

Home Security System

IOT Final Group Project 24

3.2. Detailed Code explanation

3.2.1. Raspberry PI Pico

3.2.1.1. Main file

IMPORTS

import board

import busio

import digitalio

import adafruit_pcd8544

import wifi

import socketpool

import adafruit_minimqtt.adafruit_minimqtt as MQTT

import json

import time

Importing all required libraries

CONNECT TO WIFI

WiFi connection details

wifi_ssid = '************' # Sensored because someone put their actual data

in here :D

wifi_password = '************' # Sensored because someone put their actual

data in here :D

Connect to WiFi

print("Connecting to WiFi...")

try:

 wifi.radio.connect(wifi_ssid, wifi_password)

 print("Connected to WiFi!")

except Exception as e:

 print(f"Failed to connect to WiFi: {e}")

 import sys

 sys.exit()

- Wi-Fi ssid and password defined in variables

- Wifi module used to connect to wifi (exception statement)

o If success: => print message

o If fails: => exit program

Home Security System

IOT Final Group Project 25

SETUP MQTT BROKER

MQTT broker details

mqtt_broker = "192.168.0.125"

mqtt_topic = "/home/data"

MQTT setup

pool = socketpool.SocketPool(wifi.radio)

mqtt_client = MQTT.MQTT(

 broker=mqtt_broker,

 port=1883,

 socket_pool=pool,

)

def connect(client, userdata, flags, rc):

 print("Connected to MQTT Broker!")

 client.subscribe(mqtt_topic)

def disconnect(client, userdata, rc):

 print("Disconnected from MQTT Broker!")

- Details stored in variables

- Library socketpool used to use the wifi as local socket pool

- MQTT library used to store mqtt client in variable

- Connect function used to subscribe to a certain MQTT topic

Home Security System

IOT Final Group Project 26

LCD

Setup for LCD

spi = busio.SPI(clock=board.GP6, MOSI=board.GP7)

cs = digitalio.DigitalInOut(board.GP5)

dc = digitalio.DigitalInOut(board.GP4)

rst = digitalio.DigitalInOut(board.GP8)

back_light = digitalio.DigitalInOut(board.GP9)

cs.direction = digitalio.Direction.OUTPUT

dc.direction = digitalio.Direction.OUTPUT

rst.direction = digitalio.Direction.OUTPUT

back_light.direction = digitalio.Direction.OUTPUT

lcd = adafruit_pcd8544.PCD8544(spi, dc, cs, rst)

lcd.contrast = 50

lcd.rotation = 2

def display_direction(direction):

 lcd.fill(0)

 lcd.text("Direction:", 0, 0, 1)

 lcd.text(direction, 0, 10, 1)

 lcd.show()

 back_light.value = True

def display_center(direction):

 lcd.fill(0)

 lcd.text("Person in center:", 0, 0, 1)

 lcd.text(direction, 0, 10, 1)

 lcd.show()

 back_light.value = True

- Define variables containing details

o Spi => use busio library

o Cs/dc/rst/back_light => setup pins for input/output mode (similar to wiringPI)

- Define directions

- Setup visual preferences for LCD

- Print data on screen

o Display direction if not center => also say where

o Display when person in center

Home Security System

IOT Final Group Project 27

STEPPER MOTOR CONTROL

DEFINE STEP SEQUENCE

FULL_STEP_SEQUENCE = [

 [1, 1, 0, 0], # Step 1

 [0, 1, 1, 0], # Step 2

 [0, 0, 1, 1], # Step 3

 [1, 0, 0, 1]

]

Define which parts should be powered on

SETUP PREFERENCES AND PINS USING DIGITALIO LIBRARY

DELAY_SECONDS = 0.001

motor1_pins = [

 digitalio.DigitalInOut(board.GP18),

 digitalio.DigitalInOut(board.GP19),

 digitalio.DigitalInOut(board.GP20),

 digitalio.DigitalInOut(board.GP21)

]

motor2_pins = [

 digitalio.DigitalInOut(board.GP10),

 digitalio.DigitalInOut(board.GP11),

 digitalio.DigitalInOut(board.GP12),

 digitalio.DigitalInOut(board.GP13)

]

for pin in motor1_pins + motor2_pins:

 pin.direction = digitalio.Direction.OUTPUT

- Delay set to 1 ms

- Motor pins defined for both vertical and horizontal motor (GP referencing pins as seen in hardware)

- Setup direction for pins

Home Security System

IOT Final Group Project 28

DEFINE FUNCTIONS FOR MOVING MOTOR

def rotate_full_step_left():

 display_direction("Left")

 for step_sequence in FULL_STEP_SEQUENCE:

 motor1_pins[0].value = step_sequence[0]

 motor1_pins[1].value = step_sequence[1]

 motor1_pins[2].value = step_sequence[2]

 motor1_pins[3].value = step_sequence[3]

 time.sleep(DELAY_SECONDS)

def rotate_full_step_right():

 display_direction("Right")

 for step_sequence in reversed(FULL_STEP_SEQUENCE):

 motor1_pins[0].value = step_sequence[0]

 motor1_pins[1].value = step_sequence[1]

 motor1_pins[2].value = step_sequence[2]

 motor1_pins[3].value = step_sequence[3]

 time.sleep(DELAY_SECONDS)

def rotate_full_step_up():

 display_direction("Up")

 for step_sequence in FULL_STEP_SEQUENCE:

 motor2_pins[0].value = step_sequence[0]

 motor2_pins[1].value = step_sequence[1]

 motor2_pins[2].value = step_sequence[2]

 motor2_pins[3].value = step_sequence[3]

 time.sleep(DELAY_SECONDS)

def rotate_full_step_down():

 display_direction("Down")

 for step_sequence in reversed(FULL_STEP_SEQUENCE):

 motor2_pins[0].value = step_sequence[0]

 motor2_pins[1].value = step_sequence[1]

 motor2_pins[2].value = step_sequence[2]

 motor2_pins[3].value = step_sequence[3]

 time.sleep(DELAY_SECONDS)

Home Security System

IOT Final Group Project 29

RECEIVE DATA OVER MQTT + REACT

RECEIVE MESSAGE OVER MQTT CLIENT

def message(client, topic, message):

 print(f"Received message on topic {topic}: {message}")

 data = json.loads(message)

 left_shoulder = data.get("left_shoulder")

 right_shoulder = data.get("right_shoulder")

 left_hip = data.get("left_hip")

 right_hip = data.get("right_hip")

 margin = data.get("margin")

 center_x = data.get("center_x")

 center_y = data.get("center_y")

 if None in [left_shoulder, right_shoulder, left_hip, right_hip, margin,

center_x, center_y]:

 print('Invalid data received')

 return

REACT TO IT BY USING THE STEPPER FUNCTIONS

 shoulder_hip_points = [left_shoulder, right_shoulder, left_hip,

right_hip]

 if shoulder_hip_points[1][0] > center_x + margin and

shoulder_hip_points[1][1] > center_y + margin:

 print('bottom right diagonal')

 rotate_full_step_right()

 rotate_full_step_up()

 elif shoulder_hip_points[0][0] < center_x - margin and

shoulder_hip_points[0][1] > center_y + margin:

 print('bottom left diagonal')

 rotate_full_step_left()

 rotate_full_step_up()

 elif shoulder_hip_points[3][0] > center_x + margin and

shoulder_hip_points[3][1] < center_y - margin:

 print('top right diagonal')

 rotate_full_step_down()

 rotate_full_step_right()

Home Security System

IOT Final Group Project 30

 elif shoulder_hip_points[2][0] < center_x - margin and

shoulder_hip_points[2][1] < center_y - margin:

 print('top left diagonal')

 rotate_full_step_down()

 rotate_full_step_left()

 elif shoulder_hip_points[1][0] > center_x - margin and

shoulder_hip_points[3][0] > center_x - margin:

 print('right')

 rotate_full_step_right()

 elif shoulder_hip_points[2][1] < center_y + margin and

shoulder_hip_points[3][1] < center_y + margin:

 print('above')

 rotate_full_step_up()

 elif shoulder_hip_points[0][1] > center_y - margin and

shoulder_hip_points[1][1] > center_y - margin:

 print('beneath')

 rotate_full_step_down()

 elif shoulder_hip_points[0][0] < center_x + margin and

shoulder_hip_points[2][0] < center_x + margin:

 print('left')

 rotate_full_step_left()

 elif shoulder_hip_points[0][0] > center_x - margin and

shoulder_hip_points[0][1] < center_y - margin and \

 shoulder_hip_points[1][0] < center_x + margin and

shoulder_hip_points[1][1] < center_y - margin and \

 shoulder_hip_points[2][0] > center_x - margin and

shoulder_hip_points[2][1] > center_y + margin and \

 shoulder_hip_points[3][0] < center_x + margin and

shoulder_hip_points[3][1] > center_y - margin:

 print('center')

 display_center("shooting")

- Uses earlier defined functions to move the motors depending on the input they get from MQTT

server

CONNECT AND GET DATA

mqtt_client.on_connect = connect

mqtt_client.on_disconnect = disconnect

mqtt_client.on_message = message

Home Security System

IOT Final Group Project 31

CONNECT TO BROKER WITH DEBUG INFORMATION

Try connecting to the MQTT broker with debug information

print("Attempting to connect to MQTT broker...")

try:

 mqtt_client.connect()

 print("Connected to MQTT broker!")

except Exception as e:

 print("Failed to connect to MQTT broker:", e)

 import sys

 sys.exit()

KEEP PROGRAM RUNNING TO KEEP RECEIVING DATA

- Make sure you can keep reacting and moving everything with stepper motors

Keep the program running to receive messages

try:

 while True:

 mqtt_client.loop(timeout=2)

 time.sleep(0.1)

finally:

 # Clean up GPIO pins

 for pin in motor1_pins + motor2_pins:

 pin.deinit()

 lcd.fill(0)

 lcd.show()

3.2.1.2. Libraries

- Compiled micropython

Home Security System

IOT Final Group Project 32

3.2.2. OrangePI 3 LTS

3.2.2.1. Main

IMPORTS

import cv2

import mediapipe as mp

import numpy as np

import wiringpi as wp

import time

import paho.mqtt.client as mqtt

import json # Import the json module

from NS_hcsr04 import HCSR04

Importing all required libraries

DEFINE VARIABLES

AI MODEL

mp_pose = mp.solutions.pose

pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5,

min_tracking_confidence=0.5)

MQTT BROKER

broker_address = "192.168.0.125"

topic = "/home/data"

PIN DEFINITIONS

DISTANCE SENSOR

TRIGGER_PIN = 3 # Trigger pin for HC-SR04

ECHO_PIN = 4 # Echo pin for HC-SR04

RELAYS

RELAY1_PIN = 1 # Relay 1 connected to GPIO pin 1

RELAY2_PIN = 2

RELAY4_pin=5

Home Security System

IOT Final Group Project 33

Function to initialize GPIO pins and WiringPi library

wp.wiringPiSetup()

wp.pinMode(RELAY1_PIN, 1)

wp.pinMode(RELAY2_PIN, 1)

wp.pinMode(RELAY4_pin,1)

FUNCTION TO CONNECT TO MQTT BROKER

def on_connect(client, userdata, flags, rc):

 if rc == 0:

 print("Connected to MQTT Broker!")

 else:

 print("Failed to connect, return code %d\n", rc)

Home Security System

IOT Final Group Project 34

AI FUNCTIONS

DETECT SHOULDER AND HIP

def detect_shoulder_hip(image):

 image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 results = pose.process(image_rgb)

 if results.pose_landmarks:

 landmarks = results.pose_landmarks.landmark

 left_shoulder =

(int(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x *

image.shape[1]),

 int(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.v

alue].y * image.shape[0]))

 right_shoulder =

(int(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].x *

image.shape[1]),

 int(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER

.value].y * image.shape[0]))

 left_hip = (int(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x *

image.shape[1]),

 int(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y *

image.shape[0]))

 right_hip = (int(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x

* image.shape[1]),

 int(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y

* image.shape[0]))

 return left_shoulder, right_shoulder, left_hip, right_hip

 else:

 return None

- Return positions for every variable

RELAY FUNCTIONS

def enableRelay(pin):

 wp.digitalWrite(pin, 1)

 print(f"Relay on pin {pin} enabled")

def disableRelay(pin):

 wp.digitalWrite(pin, 0)

 print(f"Relay on pin {pin} disabled")

Home Security System

IOT Final Group Project 35

FUNCTION TO CALCULATE TRAPEZOID AREA

- Used for AI model

def trapezoid_area(left_top, left_bottom, right_top, right_bottom):

 width_top = np.linalg.norm(np.array(right_top) - np.array(left_top))

 width_bottom = np.linalg.norm(np.array(right_bottom) -

np.array(left_bottom))

 height = np.linalg.norm(np.array(left_bottom) - np.array(left_top))

 area = 0.5 * (width_top + width_bottom) * height

 return area

FUNCTION TO CALCULATE MARGIN

- Used for AI model

def calculate_margin(area):

 min_margin = 10

 max_margin = 50

 margin = min_margin + (max_margin - min_margin) * (area / 100000)

 return int(max(min_margin, min(max_margin, margin)))

CONNECT TO MQTT BROKER

- Uses functions that were defined earlier

client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION1)

client.on_connect = on_connect

client.connect(broker_address)

client.loop_start()

INITIALISE OPENCV TO CAPTURE IMAGES FOR AI

cap = cv2.VideoCapture(1, cv2.CAP_V4L2)

Home Security System

IOT Final Group Project 36

MAIN PROGRAM LOOP

while True:

DEFINE VARIABLES FOR AI

 ret, frame = cap.read()

DEFINE DISTANCE SENSOR AND GET VARIABLE CONTAINING DISTANCE

 sensor = HCSR04(trigger_pin=12, echo_pin=14)

 distance = sensor.distance_cm()

LOG AND CORRECT DISTANCE VALUE

 if distance == 'Out of range':

 distance = 10000

 print(distance)

If value out of range => set to high number, otherwise can’t be compared to another number later on

AI DATA PROCESSING

 shoulder_hip_points = detect_shoulder_hip(frame)

 if shoulder_hip_points:

 left_shoulder, right_shoulder, left_hip, right_hip =

shoulder_hip_points

 if shoulder_hip_points is not None:

 area = trapezoid_area(left_shoulder, left_hip, right_shoulder,

right_hip)

 margin = calculate_margin(area)

 center_x = frame.shape[1] // 2

 center_y = frame.shape[0] // 2

Home Security System

IOT Final Group Project 37

 # Convert the points to a dictionary

 data_dict = {

 "left_shoulder": left_shoulder,

 "right_shoulder": right_shoulder,

 "left_hip": left_hip,

 "right_hip": right_hip,

 "margin":margin,

 "center_y": center_y,

 "center_x":center_x

 }

 # Convert the dictionary to a JSON string

 data_json = json.dumps(data_dict)

 # Publish the JSON string

 client.publish(topic, data_json)

 print("Message sent: ", data_json)

 for point in shoulder_hip_points:

 cv2.circle(frame, point, 5, (0, 255, 0), -1)

 cv2.line(frame, shoulder_hip_points[0], shoulder_hip_points[1],

(255, 255, 255), 2)

 cv2.line(frame, shoulder_hip_points[2], shoulder_hip_points[3],

(255, 255, 255), 2)

 cv2.line(frame, shoulder_hip_points[0], shoulder_hip_points[2],

(255, 255, 255), 2)

 cv2.line(frame, shoulder_hip_points[1], shoulder_hip_points[3],

(255, 255, 255), 2)

- Check if ret valid, otherwise skip to end of loop and restart

- Use predefined function (see earlier) to get points and read them

- Put obtained data in a dictionary

- Serialize to json

- Send data over MQTT so pico can respond

- Visual version only: draw lines on image following body

Home Security System

IOT Final Group Project 38

CONTROL SMOKE SCREEN

 if distance >= 100 or distance == 0 :

 enableRelay(RELAY2_PIN)

 enableRelay(RELAY1_PIN)

 time.sleep(1) # Ensure RELAY2_PIN is enabled for at least 1 second

 disableRelay(RELAY2_PIN)

 else:

 disableRelay(RELAY1_PIN)

 disableRelay(RELAY2_PIN)

- If distance larger than 100:

o Enable relay (opens gate, turning of smoke)

o Check if distance == 0 => make sure it does not trigger when module is started

- Else:

o Enable smoke screen

CONTROL WATER GUN

if shoulder_hip_points is None:

 print('empty')

 else:

 if shoulder_hip_points[0][0] > center_x - margin and

shoulder_hip_points[0][1] < center_y - margin and \

 shoulder_hip_points[1][0] < center_x + margin and

shoulder_hip_points[1][1] < center_y - margin and \

 shoulder_hip_points[2][0] > center_x - margin and

shoulder_hip_points[2][1] > center_y + margin and \

 shoulder_hip_points[3][0] < center_x + margin and

shoulder_hip_points[3][1] > center_y - margin:

 print('center')

 wp.digitalWrite(RELAY4_pin,1)

 else:

 wp.digitalWrite(RELAY4_pin,0)

- If screen empty => do nothing

- Else:

o Check where person is

o If in center => enable relay to spray water

Home Security System

IOT Final Group Project 39

ALLOW PROCESS TO BE CANCELLED

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

Home Security System

IOT Final Group Project 40

3.2.2.2. Custom module – NS_hcrs04

- Based on module made by rsc1975 in order for it to support WiringPI

IMPORTS

import wiringpi as wp

import time

MODULE INFORMATION

__version__ = '0.6.9'

__author__ = 'NanoSievert'

__license__ = "BSD 3-Clause"

- Version: don’t even worry about it

- Author: NanoSievert = Rik

- License: you can do whatever you want with it (based on original license)

- Note: most of the documentation is edited from original module

CLASS DEFINITION

- So object can be made of sensor

class HCSR04:

 """

 Unofficial port of HC-SR04 Driver by rsc1975 made for an IOT project

trying to blast people with a pink water gun (makes it support wiringpi)

 """

UTIL FUNCTIONS

 # Util functions

 def convert_us_s(us):

 """Converts time in microseconds to seconds."""

 return us*(10**(-6))

- Converts microseconds (µs) to seconds (s)

Home Security System

IOT Final Group Project 41

MAIN FUNCTIONS

CONSTRUCTOR

def __init__(self, trigger_pin, echo_pin, echo_timeout_us=500*2*30):

 """

 trigger_pin: Output pin to send pulses

 echo_pin: Readonly pin to measure the distance. The pin should be

protected with 1k resistor

 echo_timeout_us: Timeout in microseconds to listen to echo pin.

 By default is based in sensor limit range (4m)

 """

 self.echo_timeout_us = echo_timeout_us

 self.trigger_pin = trigger_pin

 self.echo_pin = echo_pin

 # Setup WiringPi

 wp.wiringPiSetup()

 # Set trigger pin as output

 wp.pinMode(self.trigger_pin, 1)

 # Set echo pin as input

 wp.pinMode(self.echo_pin, 0)

- Required parameters:

o Trigger_pin

o Echo_ping

- Optional parameters:

o Echo-timeout

- Sets up wiringpi

- Sets trigger pin to output

- Set echo pin to input

Home Security System

IOT Final Group Project 42

[FUNCTION] SEND PULSE AND WAIT

 def _send_pulse_and_wait(self):

 """

 Send the pulse to trigger and listen on echo pin.

 We use the method `wp.micros()` to get the microseconds until the

echo is received.

 """

 wp.digitalWrite(self.trigger_pin, wp.LOW)

 time.sleep(0.000005) # Stabilize the sensor

 wp.digitalWrite(self.trigger_pin, wp.HIGH)

 time.sleep(0.00001) # Send a 10us pulse

 wp.digitalWrite(self.trigger_pin, wp.LOW)

 # Start time

 start = time.time()

 # Wait for the echo pin to go high

 while wp.digitalRead(self.echo_pin) == wp.LOW:

 if (time.time() - start) > (self.echo_timeout_us / 1000000):

 print('Out of range')

 return

 start = time.time()

 # Wait for the echo pin to go low

 while wp.digitalRead(self.echo_pin) == wp.HIGH:

 pulse_time = (time.time() - start) * 1000000 # Convert to

microseconds

 if pulse_time > self.echo_timeout_us:

 print('Out of range')

 return

 return pulse_time

- Send pulse on trigger pin

- Listen on echo pin

- Measure microseconds between trigger and echo and return that

Home Security System

IOT Final Group Project 43

[FUNCTION] GET DISTANCE IN MM

 def distance_mm(self):

 """

 Get the distance in millimeters without floating point operations.

 """

 pulse_time = self._send_pulse_and_wait()

 # To calculate the distance we get the pulse_time and divide it by

2

 # (the pulse walk the distance twice) and by 29.1 because

 # the sound speed on air (343.2 m/s), that It's equivalent to

 # 0.34320 mm/us that is 1mm each 2.91us

 # pulse_time // 2 // 2.91 -> pulse_time // 5.82 -> pulse_time * 100

// 582

 if not isinstance(pulse_time, float):

 return 0

 mm = pulse_time * 100 // 582

 return mm

- Use function defined in previous step

- Calculate distance depending on the speed at which sound travels in air

o Also keeps in mind that the signal travels both to the object and back from the object, so

the first result is divided by two to get the distance

▪ Integrated in the formula

Home Security System

IOT Final Group Project 44

[FUNCTION] GET DISTANCE IN CM

 def distance_cm(self):

 """

 Get the distance in centimeters with floating point operations.

 It returns a float.

 """

 pulse_time = self._send_pulse_and_wait()

 # To calculate the distance we get the pulse_time and divide it by

2

 # (the pulse walk the distance twice) and by 29.1 because

 # the sound speed on air (343.2 m/s), that It's equivalent to

 # 0.034320 cm/us that is 1cm each 29.1us

 if not isinstance(pulse_time, float):

 return 0

 cms = (pulse_time / 2) / 29.1

 return cms

- Similar to previous one, just uses cm as output instead of mm (decided early in calculation

process)

Home Security System

IOT Final Group Project 45

4. Hardware Explanation

4.1. List of components

4.1.1. Standard components

• Jumper cables

• (1x) Raspberry PI pico

• (1x) OrangePI 3 LTS

• (1x) HC-SR04 Sensor (Distance)

• (2x) 220 ohm resistor

• (1x) LCD 5110

4.1.2. Extra components

Object(s) Image

(1x) Watergun

(5x) L298N Motor Dirver

(1x) Smoke machine

(2x) 12V Battery holders

(5x) Nema 17

Home Security System

IOT Final Group Project 46

(4x) Shaft coupler

Nuts and bolts

PLA+ filament

Smaller breadboards

Adhesive pads

Furniture feet

Ball bearings

Home Security System

IOT Final Group Project 47

4.2. Components

4.2.1. Jumper cables

Source IOT-ESSENTIALS-Kit

Functionalities
- Connect things
- Deliver power

4.2.2. (1x) Raspberry PI pico

4.2.2.1. The microcontroller

Feature Description

Processor Dual-core Arm Cortex M0+ processor

Clock Speed Flexible clock running up to 133 MHz

SRAM 264kB

Flash Memory 2MB on-board

USB USB 1.1 with device and host support

Power Modes Low-power sleep and dormant modes

Programming
Drag-and-drop programming using mass storage
over USB

GPIO Pins 26 × multi-function GPIO pins

SPI 2 × SPI

I2C 2 × I2C

UART 2 × UART

ADC 3 × 12-bit ADC

PWM Channels 16 × controllable PWM channels

Home Security System

IOT Final Group Project 48

Clock and Timer Accurate clock and timer on-chip

Temperature Sensor Yes

Floating-Point Libraries Accelerated floating-point libraries on-chip

Programmable I/O (PIO) State Machines
8 × Programmable I/O (PIO) state machines for
custom peripheral support

4.2.2.2. Project Integration

Source Given in class

Functionalities
- Receive messages
- Turn motors
- Display things on LCD

In our project, this component has been mounted on a breadboard to make its pins more accessible.

4.2.2.3. Connections (pin-based)

G° Color schematic Usage Source Destination

6 Lime [L] SPIO [PICO] SPI0 RX [LCD] DC

7 Orange [L] SPIO [PICO] SPI0 CSn [LCD] CD

9 White [L] GP [PICO] SPI0 SCK [LCD] CLK

10 Blue [L] GP [PICO] SPI0 TX [LCD] DIN

11 Purple [L] GP [PICO] SPI1 RX [LCD] RST

12 Yellow [L] GP [PICO] SPI1 CSn [LCD] BL

23 Blue [R] GND [PICO] GND [L298N] (V+H) GND

24 Yellow [R] GP [PICO] GP-18 [L298N] (V) IN 1

25 Lime [R] GP [PICO] GP-19 [L298N] (V) IN 2

26 Gray [R] GP [PICO] GP-20 [L298N] (V) IN 3

Home Security System

IOT Final Group Project 49

27 Orange [R] GP [PICO] GP-21 [L298N] (V) IN 4

29 Brown [R] GP [PICO] GP-22 [L298N] (H) IN 1

30 Aqua [R] GP [PICO] RUN [L298N] (H) IN 2

31 Purple [R] GP [PICO] GP-26 [L298N] (H) IN 3

32 Pink [R] GP [PICO] GP-27 [L298N] (H) IN 4

37 Red [R] 3V3 [PICO] 3.3V out [LCD] VCC

38 Black [R] GND [PICO] GND [LCD] GND

- Connections used to control LCD: 6, 7, 9, 10, 11, 12, (Power: 37, 38)

- Connections used to control motors:

o Vertical: 24, 25, 26, 27

o Horizontal: 29, 30, 31, 32

o Power provided through breadboard (12V external input)

Home Security System

IOT Final Group Project 50

4.2.3. (1x) OrangePI 3 LTS

4.2.3.1. The embeded device

Feature Description

Processor Allwinner H6 Quad-core Cortex-A53

GPU Mali T720MP2 GPU

Memory 2GB DDR3 (shared with GPU)

Storage Options microSD card slot, 8GB eMMC flash

Networking Gigabit Ethernet, Wi-Fi (802.11 b/g/n/ac), Bluetooth 5.0

USB Ports 3 × USB 2.0, 1 × USB 3.0 OTG

Display Outputs HDMI 2.0a (up to 4K), CVBS, DSI

Camera Interface CSI Camera Connector

Audio HDMI output, 3.5mm audio jack

Expansion 26-pin GPIO header

Power Supply 5V/3A via USB Type-C

Operating System Support Android, Debian, Ubuntu

Dimensions 90mm × 64mm

Additional Features IR receiver, RTC battery connector

4.2.3.2. Project Integration

Source Given in class

Functionalities

- Send messages
- Runs AI Model
- Triggers relays

o Gun
o Smoke machine

- Operate distance sensor

Home Security System

IOT Final Group Project 51

4.2.3.3. Connections (pin-based)

G° Color schematic Usage Source Destination

2 Red [R] 5V out [OPI3] 5V out [RELAY] Vcc

4 Red [R] 5V out [OPI3] 5V out [HC] Vcc

5 Lime [L] GPIO-1 [OPI3] GPIO-1 [HC] Trigger

6 Black [R] GND [OPI3] GND [RELAY] GND

7 Aqua [L] GPIO-2 [OPI3] GPIO-2 [HC] Echo

8 Yellow [R] GPIO-3 [OPI3] GPIO-3 [RELAY] IN 1

9 Black [L] GND [OPI3] GND [HC] GND

10 Gray [R] GPIO-4 [OPI3] GPIO-4 [RELAY] IN 2

12 Orange [R] GPIO-6 [OPI3] GPIO-6 [RELAY] IN 4

- Connections used to control relay:

o Power supply: 2

o Ground: 6

o Trigger: 8, 10, 12

- Distance Sensor

o Power supply: 4

o Ground: 9

o Trigger: 5

o Echo: 7

Home Security System

IOT Final Group Project 52

4.2.4. (1x) HC-SR04 Sensor (Distance)

4.2.4.1. The sensor

Component HC-SR04 Ultrasonic Sensor Module

Manufacturer Handson Techology

🔗 Datasheet / User Manual https://www.handsontec.com/dataspecs/HC-SR04-Ultrasonic.pdf

4.2.4.2. How does it work?

1. Module sends ultrasonic signal

2. Signal travels to the object

3. Signal bounces back from object to module

4. Module receives signal

5. Distance is calculated depending on the time it took the signal to go from the module to the object

and back

 The output should be divided by 2 because it contains both they way there and

the way back!

https://www.handsontec.com/dataspecs/HC-SR04-Ultrasonic.pdf

Home Security System

IOT Final Group Project 53

4.2.4.3. Module specifications

Source: Datasheet

Electrical Parameter Value

Operating Voltage 3.3Vdc ~ 5Vdc

Quiescent Current <2mA

Operating Current 15mA

Operating Frequency 40KHz

Operating Range & Accuracy 2cm ~ 400cm (1in ~ 13ft) ± 3mm

Sensitivity -65dB min

Sound Pressure 112dB

Effective Angle 15°

Connector 4-pins header with 2.54mm pitch

Dimension 45mm x 20mm x 15mm

Weight 9g

4.2.4.4. Sensor element construction

Piezoelectric crystals:

- Oscillate at high frequencies when electricity is applied to it

- Generate electricity when high frequencies hit them.

Home Security System

IOT Final Group Project 54

4.2.4.5. Hardware information

VCC 3V3 – 5V (Note: use resistor when using 5V, otherwise we get magic smoke D:)

TRIG Triggering Input pin

ECHO TTL Logic output pin

GND Ground pin

4.2.4.6. Timing

4.2.4.7. Project integration

Source IOT-ESSENTIALS-Kit

Functionalities - Measure distance between gun and target

The OrangePI constantly keeps track of the distance between the sensor (mounted on top of the gun) and

the target. If the target gets too close it sends a signal to the relay, which turns on the smoke machine.

Home Security System

IOT Final Group Project 55

4.2.4.8. Connections (pin-based)

N° Color schematic Usage Source Destination

1 Red Vcc [OPI3] 5V out [HC] Vcc

2 Lime Trig [OPI3] GPIO-1 [HC] Trigger

3 Aqua Echo [OPI3] GPIO-2 [HC] Echo

4 Black GND [OPI3] GND [HC] GND

4.2.5. (2x) 220 ohm resistor

4.2.5.1. The component

Home Security System

IOT Final Group Project 56

4.2.5.2. Project integration

They are mounted on a small breadboard where they are used to lower a 5V output coming from te sensor

4.2.6. (1x) LCD 5110

4.2.6.1. The Device

Component Nokia 5110 LCD Display Module

Manufacturer Nokia (Controller from Philips)

🔗 Datasheet Controller https://www.sparkfun.com/datasheets/LCD/Monochrome/Nokia5110.pdf

🔗 Module Schematic

https://www.openimpulse.com/blog/wp-

content/uploads/wpsc/downloadables/Nokia-5110-Module-

Schematic.pdf

https://www.sparkfun.com/datasheets/LCD/Monochrome/Nokia5110.pdf
https://www.openimpulse.com/blog/wp-content/uploads/wpsc/downloadables/Nokia-5110-Module-Schematic.pdf
https://www.openimpulse.com/blog/wp-content/uploads/wpsc/downloadables/Nokia-5110-Module-Schematic.pdf
https://www.openimpulse.com/blog/wp-content/uploads/wpsc/downloadables/Nokia-5110-Module-Schematic.pdf

Home Security System

IOT Final Group Project 57

4.2.6.2. Module specifications

Display Technology Dot Matrix LCD

MCU Interface SPI

Screen Size 1.5 Inch Across

Resolution 84×48 pixels

Operating Voltage 2.7V – 3.3V

Operating Current 50mA max

Viewing Angle 180°

4.2.6.3. Project integration

Source IOT-ESSENTIALS-Kit

Functionalities - Displays interesting Data

 This module is mounted on the side of our device and displays where the AI considers the target is

4.2.6.4. Connections (pin-based)

N° Color schematic Usage Source Destination

1 Black GND [PICO] GND [LCD] GND

2 Yellow GP [PICO] SPI1 CSn [LCD] BL

3 Red 3V3 [PICO] 3.3V out [LCD] VCC

4 White GP [PICO] SPI0 SCK [LCD] CLK

5 Blue GP [PICO] SPI0 TX [LCD] DIN

Home Security System

IOT Final Group Project 58

6 Lime SPIO [PICO] SPI0 RX [LCD] DC

7 Orange SPIO [PICO] SPI0 CSn [LCD] CD

8 Purple GP [PICO] SPI1 RX [LCD] RST

- Power supply: 3

- Ground: 1

4.2.6.5. The controller

- PCD8544 (Philips)

- 48x48 pixels matric LCD controller/driver

BLOCK DIAGRAM

COMPONENT EXPLANATION

(Source: Datasheet)

OSCILLATOR

- Provides clock signal for display

- No need for external clock

o Want one still? => OSC connected to Vdd input

Home Security System

IOT Final Group Project 59

ADDRESS COUNTER

- Assigns addresses to display data RAM for writing

- The X-address X6 to X0

- The Y-address Y2 to Y0 are set separately.

- After a write operation, the address counter is automatically incremented by 1, according to the V

flag.

DISPLAY DATA RAM (DDRAM)

- 48x48 bit

- Static

- 6 banks of 84 bytes (6 x 8 x 48 bits)

- Input: serial interface

DISPLAY ADDRESS COUNTER

- Display generated by shifting rows of RAM data to dot matrix LCD

Home Security System

IOT Final Group Project 60

DATA TRANSMISSION

TRANSMISSION OF ONE BYTE

- During transmission: SCE (NOT) is pulled down

- D/C Display control (seen in examples)

- SLCK: clock

- SDIN: data input

TRANSMISSION OF MULTIPLE BYTES

SERIAL BUS RESET FUNCTIONS

- Addition of RES line => overwrite active bits

Home Security System

IOT Final Group Project 61

TRANSMISSION EXAMPLE

- Mark: empty line between P and I

Home Security System

IOT Final Group Project 62

DISPLAY CONTROL EXAMPLE

4.2.6.6. Component schematic

Home Security System

IOT Final Group Project 63

4.2.7. (1x) Watergun

4.2.7.1. The object

4.2.7.2. Project integration

How do we trigger the gun with a relay?

- Trigger closed permanently

- Relay put between battery and gun

o When turned on => gun activated

R2 Is left open to activate the remote power

R1 is used to switch between button A and B

Home Security System

IOT Final Group Project 64

4.2.8. (5x) L298N Motor Driver

4.2.8.1. The object

1.1.1. (5x) L298N Motor Driver L298

Component L298N Dual H-Bridge Motor Driver

Manufacturer Handson Technology

🔗 L298N Controller https://www.mouser.be/datasheet/2/389/l298-1849437.pdf

🔗 Motor Driver https://www.handsontec.com/dataspecs/L298N%20Motor%20Driver.pdf

4.2.8.2. Module specifications

Parameter Value

Input Voltage 3.2V ~ 40Vdc

Driver L298N Dual H Bridge DC Motor Driver

Power Supply DC 5 V - 35 V

Peak Current 2 Amp

Operating Current Range 0 ~ 36mA

Control Signal Input Voltage Range

 Low -0.3V ≤ Vin ≤ 1.5V

 High 2.3V ≤ Vin ≤ Vss

Enable Signal Input Voltage Range

 Low -0.3 ≤ Vin ≤ 1.5V (control signal is invalid)

 High 2.3V ≤ Vin ≤ Vss (control signal active)

Maximum Power Consumption 20W (when the temperature T = 75 ℃)

Storage Temperature -25 ℃ ~ +130 ℃

On-board +5V Regulated Output Supply Yes (supply to controller board e.g., Arduino)

Size 3.4cm x 4.3cm x 2.7cm

https://www.mouser.be/datasheet/2/389/l298-1849437.pdf
https://www.handsontec.com/dataspecs/L298N%20Motor%20Driver.pdf

Home Security System

IOT Final Group Project 65

4.2.8.3. Project Integration

Source Ordered online

Functionalities
- Operate stepper motors
- Give them required voltage

This driver is used to operate the two stepper motors that move the gun and the entire device on both the

X-axis and the Y-axis. The driver is operated by the Raspberry PI Pico.

The left one is for horizontal movement, the right on is for vertical movement.

4.2.8.4. Connections (pin-based)

N° Color schematic Usage Source Destination

1 Brown [H] GPIO [PICO] GP-22 [L298N] (H) IN 1

2 Aqua [H] GPIO [PICO] RUN [L298N] (H) IN 2

3 Purple [H] GPIO [PICO] GP-26 [L298N] (H) IN 3

4 Pink [H] GPIO [PICO] GP-27 [L298N] (H) IN 4

5 Yellow [V] GPIO [PICO] GP-18 [L298N] (V) IN 1

6 Lime [V] GPIO [PICO] GP-19 [L298N] (V) IN 2

7 Gray [V] GPIO [PICO] GP-20 [L298N] (V) IN 3

8 Orange [V] GPIO [PICO] GP-21 [L298N] (V) IN 4

9 Red [H] 12V input [BAT] 12V input [L298N] (H) 12V

10 Blue [H] GND [PICO] GND [L298N] (H) GND

11 Red [V] 12V input [BAT] 12V input [L298N] (V) 12V

12 Blue [V] GND [PICO] GND [L298N] (V) GND

- Horizontal

o Connections to control steps: 1, 2, 3, 4

o Power supply: 9

o Ground: 10

- Vertical

o Connections to control steps: 5, 6, 7, 8

o Power supply: 11

o Ground: 12

Home Security System

IOT Final Group Project 66

Home Security System

IOT Final Group Project 67

4.2.8.5. L298 Controller

🔗 L298N Controller https://www.mouser.be/datasheet/2/389/l298-1849437.pdf

WHY DO WE NEED THESE?

- Motors require higher voltage rating then our boards are compatible with (12V for each)

- Current rating to high

SPECIFICATIONS OF BOARD

Spec Value

Max U (V) 46V

Max I (A) 4A

Extra
- Overtemperature protection
- High noise immunity

“The L298 is an integrated monolithic circuit in a 15- lead Multiwatt and PowerSO20 packages. It is a high

voltage, high current dual full-bridge driver designed to accept standard TTL logic levels and drive inductive

loads such as relays, solenoids, DC and stepping motors”

(Definition as given in the datasheet)

BLOCK DIAGRAM

https://www.mouser.be/datasheet/2/389/l298-1849437.pdf

Home Security System

IOT Final Group Project 68

PIN CONNECTIONS

CIRCUIT BOARD

The datasheet does not provide a explanation on how this works exactly.

Phases will be mentioned in the Nema 17 section

Home Security System

IOT Final Group Project 69

4.2.8.6. L298N Dual H-Bridge Motor Driver

SCHEMATIC

PIN FUNCTIONS

Home Security System

IOT Final Group Project 70

HOW DOES IT WORK?

EXAMPLE WITH ONE MOTOR

The OrangePI (Arduino Uno in this example) Uses a program that provides the right sequence of steps

through the four cables (blue, aqua, white, orange). The 12V power supply is hooked up to the motors. And

the motor is connected to the two sides of the driver. Note that the driver can also be used to drive two DC

motors, which is why the connections are on either side of the driver.

The program part has (hopefully) been explained in the code section

4.2.9. (1x) Smoke machine

4.2.9.1. The Product

4.2.9.2. Project Integration

When a person comes to close, the distance sensor will detect that and send a signal to the OrangePI,

which will turn on the relay and cover the enemy with smoke, similar to how modern security protects stores

from burglars.

Home Security System

IOT Final Group Project 71

🔗 Example: NUBI 4.0 https://www.smarteksrl.it/en/home/

4.2.9.3. How do we trigger the smoke machine?

- Hotwire the remote for the machine

o One switch for turning on remote power

o One switch for deciding whether to start or stop the flow of smoke

THE REMOTE

https://www.smarteksrl.it/en/home/

Home Security System

IOT Final Group Project 72

THE BUTTONS

- Letting electricity flow through the top left (A) button turns on the smoke

- Letting electricity flow through the top right (B) button turns off the smoke

HOW DO WE HOTWIRE THIS?

We attach a cable to the positive terminal at the center and two wires to both the negative terminal on the

left and the negative terminal on the right.

- Relay 1:

Left Common Right

Cable -A Cable C Cable -B

- Relay 2:

Left Common Right

Power

supply
Cable C Empty

- The first relay will decide the button that is powered on

- The second relay will turn on the power

The second button setup is added to make sure that the power is not always enabled, to make sure

that the battery lasts longer

-A -B +

Home Security System

IOT Final Group Project 73

4.2.10. (2x) 12V Battery holders

4.2.10.1. The object

4.2.10.2. Project Integration

- Batteries are used as a 12V power supply for the motors

Home Security System

IOT Final Group Project 74

4.2.11. (5x) Nema 17

4.2.11.1. The product

🔗 Datasheet
https://pages.pbclinear.com/rs/909-BFY-775/images/Data-Sheet-

Stepper-Motor-Support.pdf

4.2.11.2. Project Integration

Source Ordered online

Functionalities - Turns components in order to aim

Connected to components using shaft couplers (4.2.12)

https://pages.pbclinear.com/rs/909-BFY-775/images/Data-Sheet-Stepper-Motor-Support.pdf
https://pages.pbclinear.com/rs/909-BFY-775/images/Data-Sheet-Stepper-Motor-Support.pdf

Home Security System

IOT Final Group Project 75

4.2.11.3. Motor specifications

Parameter Value

Phases 2

Steps/Revolution 200

Step Accuracy ±5%

Shaft Load 20,000 Hours at 1000 RPM

Axial Load

 Push 25 N (5.6 lbs.)

 Pull 65 N (15 lbs.)

Radial Load 29 N (6.5 lbs.) At Flat Center

IP Rating 40

Approvals RoHS

Operating Temperature -20° C to +40° C

Insulation Class B, 130° C

Insulation Resistance 100 Mohm

- 2 Phase

Home Security System

IOT Final Group Project 76

4.2.11.4. How do we control them?

Connected to the Pico using the two L298N drivers

Home Security System

IOT Final Group Project 77

4.2.12. (4x) Shaft coupler

4.2.12.1. The object

4.2.12.2. Project Integration

- Used to attach motors to the rotating structural components

More information in Section 5

Home Security System

IOT Final Group Project 78

5. Physical structure

5.1. Software to make parts

5.1.1. FreeCAD

Freecad is an open sourse modeling software program. Made with the intent to make 3d

moddeling for objects of any size or complexity free, easy and more comprehensive

than other more known CAD modeling programs out there.

5.2. 3D Printed components

5.2.1. Main Gun mount

This mount is attached the 2 sides of the Gun Top using

the Motor Stem and a Ball Bearing.

This has been done to make sure that the whole mount

can spin freely alongside it when the motor receives a

signal

5.2.2. Gun Barrel mount

Originally the gun came with a scope attachment.

Which we ended up redesigning and 3d printing it.

After doing this we are able to use this to attach the

Main Gun Mount to the barrel and in turn make the gun

rotate on its Y-axis without having to dismantle the gun

in any way.

Home Security System

IOT Final Group Project 79

5.2.3. Camera and distance sensor mount

Like the gun barrel mount this component is

also attached to the Main Gun Mount. This

part is designed to hold the camera, which

can therefor be held into place easily.

The front of the mount also contains a spot for

the distance sensor used for the smoke

machine.

Ideally in this way the camera and sensor

would be able to see whatever is in front and

how far from the gun to aim accordingly.

5.2.4. Gun Top

This mount is attached to the bottom motor

which in turn spins the Mount and gun on their

X-axis.

The bottom of the mount made in an X shape

on order to ideally better redistribute the

spinning force from the small attachment to the

motor stem to the large circular mount.

It also contains multiple holes used for cable

management.

These hole would be located at the middle,

one at the bottom of each side, and a circular

whole at the side of the motor.

At the very top of the arch there is a hole for

the ball bearing and for screwing in the motor

and on the side you can also find the mount for

the relay

Home Security System

IOT Final Group Project 80

5.2.5. Gun bottom

The bottom is made into a

circular shape with one 90

degree edge. Which is used for

the battery pack and

breadboard placement.

All along the side and bottom

there are cutouts for multiple

reasons.

Which would be screw holes, a

ventilation hole in the middle,

cutouts for cables and a cutout

for the on and off switch.

In the very middle the bottom

used to spin the top is placed.

To the side of it there are both

the motor controllers.

At the side near the power

switch there also is a mount for

the screen placements.

At the very bottom in the middle there is a fan we may or may not use.

The bottom also has feet which we placed for the sake of vibration reduction and for giving the fan

more space to breath.

Home Security System

IOT Final Group Project 81

6. Video

https://www.youtube.com/watch?v=4RwN2gXnb0c

https://www.youtube.com/watch?v=4RwN2gXnb0c

Home Security System

IOT Final Group Project 82

7. Self evaluation

Item Max
My

score
Motivation

Original concept 2 2 Self-defense against other team from class

Interfaces 8 5

GPIO, Stepper,

PWM

(3) 2 For the rotation of the gun, pico, motor, etc.

SPI, Analog in,

LCD

(3) 3 For the display of the status of the system and

distance.

I2C (2) 0

MQTT via Pico 4 4 For the communication between Pi-Pico

Dashboard 2 0

Extra: AI, … 2 2 Recognize the position/presence of intruder

Nice demo / video /

report

2 2 Good and detailed documentation and

demonstration

Total 20 17

Home Security System

IOT Final Group Project 83

8. References

8.1. DataSheets / User manuals

Component Link

Raspberry Pi Pico https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf

OrangePI 3 LTS
https://uelectronics.com/wp-content/uploads/2022/04/OrangePi-3-
LTS-H6-User-manual-v1.0.pdf

HCSR04 https://www.handsontec.com/dataspecs/HC-SR04-Ultrasonic.pdf

LCD 5110 Controller
https://www.sparkfun.com/datasheets/LCD/Monochrome/Nokia5110.
pdf

L298N Dual H-Bridge
Motor Driver

https://www.handsontec.com/dataspecs/L298N%20Motor%20Driver.
pdf

L298 https://cdn.bodanius.com/media/1/9d61596_img.pdf

Nema 17
https://pages.pbclinear.com/rs/909-BFY-775/images/Data-Sheet-
Stepper-Motor-Support.pdf

8.2. Schematics

Component Link

LCD 5110
https://www.openimpulse.com/blog/wp-
content/uploads/wpsc/downloadables/Nokia-5110-Module-
Schematic.pdf

8.3. Other

- Original HCSR04 module: https://github.com/rsc1975/micropython-hcsr04/tree/master

- FreeCAD Tutorial: https://www.youtube.com/watch?v=rglvJH9z5ng

https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf
https://uelectronics.com/wp-content/uploads/2022/04/OrangePi-3-LTS-H6-User-manual-v1.0.pdf
https://uelectronics.com/wp-content/uploads/2022/04/OrangePi-3-LTS-H6-User-manual-v1.0.pdf
https://www.handsontec.com/dataspecs/HC-SR04-Ultrasonic.pdf
https://www.sparkfun.com/datasheets/LCD/Monochrome/Nokia5110.pdf
https://www.sparkfun.com/datasheets/LCD/Monochrome/Nokia5110.pdf
https://www.handsontec.com/dataspecs/L298N%20Motor%20Driver.pdf
https://www.handsontec.com/dataspecs/L298N%20Motor%20Driver.pdf
https://cdn.bodanius.com/media/1/9d61596_img.pdf
https://pages.pbclinear.com/rs/909-BFY-775/images/Data-Sheet-Stepper-Motor-Support.pdf
https://pages.pbclinear.com/rs/909-BFY-775/images/Data-Sheet-Stepper-Motor-Support.pdf
https://www.openimpulse.com/blog/wp-content/uploads/wpsc/downloadables/Nokia-5110-Module-Schematic.pdf
https://www.openimpulse.com/blog/wp-content/uploads/wpsc/downloadables/Nokia-5110-Module-Schematic.pdf
https://www.openimpulse.com/blog/wp-content/uploads/wpsc/downloadables/Nokia-5110-Module-Schematic.pdf
https://github.com/rsc1975/micropython-hcsr04/tree/master
https://www.youtube.com/watch?v=rglvJH9z5ng

Home Security System

IOT Final Group Project 84

CONTACT

Naam | Functie

xxx.xxx@thomasmore.be

Tel. + 32 xx xx xx xx

VOLG ONS

www.thomasmore.be

fb.com/ThomasMoreBE

#WeAreMore

